Multidrug-Resistant Hospital-Acquired Infections: Reducing Risk Through Quality Improvement
Hospital-Acquired Infections

- Associated with significant morbidity and mortality
- High economic cost
- Frequent sites of HAIs
 - Surgical wound
 - Urinary tract
 - Lower respiratory tract
 - Bloodstream
- Highest prevalence
 - ICUs
 - Acute surgical and orthopedic wards
- Pathogens can be transmitted to community by patients, staff, visitors

HAI=hospital-acquired infections; ICU=intensive care unit.
Impact of Multidrug Resistance on HAIs

• Many HAIs are caused by MDR organisms\(^1\)
 – For example, MRSA, VRE, ESBL producers

• ESKAPE pathogens cause majority of US hospital infections\(^2\)
 – *Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp*

• Widespread use of antibiotics in hospitals suppresses normal flora; allows MDR bacteria to flourish\(^1\)

• Colonized or infected patients spread MDR pathogens to hospital environment, staff, and other patients\(^1\)

• Resistant pathogens can transfer resistance genes and virulence factors to other types of bacteria\(^1\)

ESBL=extended-spectrum β-lactamase; MDR=multidrug-resistant; MRSA=methicillin-resistant *Staphylococcus aureus*; VRE=vancomycin-resistant enterococci.

Infection Control and Quality Assurance for HAIs

- Infection control was once surveillance oriented; now it is prevention oriented
- Financial pressures from CMS and others
- Promotion of prevention
 - From CMS; JC; IHI; VHA; Premier, Inc.; and others
- Public reporting
- Patient safety movement
- Antimicrobial stewardship
- Performance improvement movement
 - Focus on system-wide change

CMS=Centers for Medicare & Medicaid Services; IHI=Institute for Healthcare Improvement; JC=The Joint Commission; VHA=Veterans Health Administration.
Forces Driving the Quality Movement

Transparency
(IOM, media reports, Web sites)

Government
(CMS, CDC, VHA, legislative mandates)

Hospital
(Internal commitment to patient safety and quality)

Business
(Pay for performance, The Leapfrog Group)

National Quality Organizations
(JC, NQF, AHRQ, IHI)

AHRQ=Agency for Healthcare Research and Quality; CDC=Centers for Disease Control and Prevention; IOM=Institute of Medicine; NHQ=National Quality Forum.
Antibiotic-Resistant Gram-Positive Bacteria

- Resistance among Gram-positives is increasing
- *Streptococcus pneumoniae*¹
- VRE¹
- MRSA
 - HA-MRSA
 - Agents that may be effective: vancomycin, quinupristin-dalfopristin, minocycline, linezolid, daptomycin, and tigecycline¹
 - Vancomycin-resistant *S aureus* has been reported²
 - CA-MRSA resistant to β-lactams³
 - Agents that may be effective: clindamycin, doxycycline, and TMP/SMX¹

CA-MRSA=community-associated MRSA; HA-MRSA=healthcare-associated MRSA; TMP/SMX=trimethoprim/sulfamethoxazole.
Proportion of MRSA and VRE in Hospitalized Patients, 1995-2007 (NNIS/NHSN)

Higher Mortality Associated With MRSA Than MSSA Bacteremia

MSSA = methicillin-susceptible *S. aureus*.

Economic Impact of MRSA Bacteremia

Adjusted Hospital Costs After S aureus Bacteremia
Analysis of Covariance (n=353)

Fixed direct costs are costs such as administration, clerical support, and building overhead; fixed indirect costs are costs such as hotel costs, utilities, maintenance, and housekeeping; variable direct costs are costs such as nursing staff and medications.

MDR, Panresistant, and XDR Gram-Negative Bacteria

• MDR strains may be defined as those resistant to ≥2 classes of normally active antibiotics\(^1\)
 – Classes: antipseudomonal cephalosporins, antipseudomonal carbapenems, β-lactam/β-lactamase inhibitor combinations, antipseudomonal fluoroquinolones, aminoglycosides

• Panresistant strains are not susceptible to all of the following\(^2\)
 – Antipseudomonal cephalosporins, antipseudomonal carbapenems, piperacillin/tazobactam, ciprofloxacin, levofloxacin

• Extremely drug-resistant (XDR) strains are not susceptible to all of the following\(^2\)
 – Antipseudomonal cephalosporins, antipseudomonal carbapenems, piperacillin/tazobactam, ticarcillin/clavulanate, ampicillin/sulbactam, ciprofloxacin, levofloxacin, aminoglycosides, tigecycline, polymyxins

For imipenem, ceftazidime, and amikacin, results of Cochran-Armitage χ^2 tests for trend were significant ($P<0.001$).

Costs of Gram-Negative Resistance

- University hospital surgical ICU and ward
- 604 surgical patients with GNR infections
 - 467 sensitive and 137 resistant* GNR infections

*Resistance was defined as resistance to all drugs in ≥1 of these antibiotic classes: aminoglycosides, cephalosporins, carbapenems, and fluoroquinolones.

GNR=Gram-negative rod.
Mortality Associated With Initial Inappropriate* Antimicrobial Therapy

Critically Ill Patients With VAP or BSI

- Luna (1997) – VAP†1
 - Initial appropriate therapy: 38%
 - Initial inappropriate therapy: 91%
- Rello (1997) – VAP‡2
 - Initial appropriate therapy: 15.6%
 - Initial inappropriate therapy: 37%
- Kollef (1998) – VAP†3
 - Initial appropriate therapy: 33.3%
 - Initial inappropriate therapy: 60.8%
- Ibrahim (2000) – BSI‡4
 - Initial appropriate therapy: 28.4%
 - Initial inappropriate therapy: 61.9%
- Harbarth (2003) – Severe sepsis†5
 - Initial appropriate therapy: 24%
 - Initial inappropriate therapy: 39%
- Vallés (2003) – BSI†6
 - Initial appropriate therapy: 37%
 - Initial inappropriate therapy: 69.4%

*Based on the 2005 American Thoracic Society (ATS)/Infectious Diseases Society of America (IDSA) guidelines for hospital-acquired pneumonia (HAP)/VAP/healthcare-associated pneumonia (HCAP) (Am J Respir Crit Care Med. 2005;171:388-416), “inappropriate” would be the term used to refer to the inadequate therapy noted on this slide. †Crude (overall) mortality; ‡Infection-related mortality. BSI=bloodstream infection; VAP=ventilator-associated pneumonia.

Resistance as a Risk Factor for Inadequate Therapy and Mortality in VAP

- 151 patients with VAP: 82 received adequate therapy; 69, inadequate therapy
- Risk factors for inadequate treatment of VAP: MDR bacteria (OR=3.07), polymicrobial infection (OR=3.67), and late-onset VAP (OR=2.93)

OR=odds ratio.
Pneumonia Definitions

• HAP: pneumonia occurring ≥48 hours after admission\(^1\)
 – Not incubating at time of admission
• VAP: pneumonia arising >48 to 72 hours after endotracheal intubation\(^1\)
• HCAP: includes patients\(^1\)
 – Hospitalized in acute care hospital for ≥2 days within 90 days of infection
 – Residing in nursing home or long-term care facility
 – Receiving intravenous antibiotic therapy, chemotherapy, or wound care within 30 days of infection
 – Attending a hospital or hemodialysis clinic
• CAP: pneumonia occurring outside the hospital setting in patients not meeting HCAP criteria\(^2,3\)

CAP=community-acquired pneumonia.
Recent Decline in VAP Rates per 1000 Ventilator Days in the US (NHSN)

<table>
<thead>
<tr>
<th>Type of ICU</th>
<th>Pooled Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004(^1)</td>
</tr>
<tr>
<td>Burn</td>
<td>12.0</td>
</tr>
<tr>
<td>Cardiothoracic</td>
<td>7.2</td>
</tr>
<tr>
<td>Coronary</td>
<td>4.4</td>
</tr>
<tr>
<td>Medical</td>
<td>4.9</td>
</tr>
<tr>
<td>Medical-surgical</td>
<td></td>
</tr>
<tr>
<td>Major teaching</td>
<td>5.4</td>
</tr>
<tr>
<td>All others</td>
<td>5.1</td>
</tr>
<tr>
<td>Neurosurgical</td>
<td>11.2</td>
</tr>
<tr>
<td>Pediatric</td>
<td>2.9</td>
</tr>
<tr>
<td>Surgical</td>
<td>9.3</td>
</tr>
<tr>
<td>Trauma</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Pathogens Associated With VAP in US Hospitals, 2006-2007 (NHSN)

- 54.4% of \textit{S} \textit{aureus} isolates were MRSA

Risk Factors for MDR Pathogens Causing HAP, HCAP, and VAP

• Antimicrobial therapy in preceding 90 days
• Current hospitalization of ≥5 days
• High frequency of antibiotic resistance in community or in specific hospital unit
• Immunosuppressive disease and/or therapy
• Presence of risk factors for HCAP
 – Including recent hospitalization or residence in a nursing home or extended-care facility

Adapted with permission from ATS/IDSA. Am J Respir Crit Care Med. 2005;171:388-416.
MRSA CAP Pneumonia, 2006-2007

• 51 S aureus CAP cases referred to the CDC in 2006-2007
 – From 19 states
 – Median age 16 years
 – 44% had no underlying comorbidities
 – 33% had positive influenza test; 91% of these died
 – Of 47 patients with reported outcome, 51% died
 – Median time from symptoms onset to death: 4 days

• 37 of the 51 cases were due to MRSA
 – 48% died
 – Only 43% received MRSA coverage (linezolid or vancomycin) empirically

Initial Empiric Therapy for HAP: Late-Onset Disease or Risk Factors for MDR Pathogens

<table>
<thead>
<tr>
<th>Potential Pathogens</th>
<th>Initial Broad-Spectrum Combination Antibiotic Therapy</th>
</tr>
</thead>
</table>
| Potential pathogens for patients without risk factors and MDR pathogens
P. aeruginosa
K. pneumoniae (ESBL+)*
Acinetobacter spp* | Antipseudomonal cephalosporin
or
Antipseudomonal carbapenem
or
β-lactam/β-lactamase inhibitor *plus*
Antipseudomonal fluoroquinolone*
or
Aminoglycoside
plus
Linezolid or vancomycin† |

*If an ESBL strain, such as *K. pneumoniae* or an *Acinetobacter* spp is suspected, a carbapenem is a reliable choice. If *L. pneumophilia* is suspected, the combination antibiotic regimen should include a macrolide (eg, azithromycin), or a fluoroquinolone (eg, ciprofloxacin or levofloxacin) should be used rather than an aminoglycoside.

†If MRSA risk factors are present or there is a high incidence locally.
Adapted with permission from ATS/IDSA. *Am J Respir Crit Care Med.* 2005;171:388-416.
Deescalation of Antibiotic Therapy

• Approach to deescalation/streamlining
 – Initially treat with broad-spectrum antibiotics\(^1,2\)
 – Discontinue antibiotic therapy if no evidence of infection\(^3\)
 – Narrow the spectrum of activity based on culture findings, when possible\(^1,2\)
 – Shorten course of therapy, based on culture findings and clinical course\(^4\)

• Exceptions to general approach
 – Do not discontinue antibiotics in a patient who is decompensating
 – Patients may be ill and require therapy, notwithstanding negative culture results

Microbiology of Intraabdominal Infection

Primary¹

Enterobacteriaceae
(Gram-negative rods including *Escherichia coli*, *Klebsiella* spp)
Streptococcus pneumoniae
Enterococcus faecalis

Secondary (Bowel Perforation); Complicated Intraabdominal Infection¹

Enterobacteriaceae
(Gram-negative rods)
Anaerobic bacteria
(including *Bacteroides fragilis*, *Enterococcus* spp)

E coli (38% of intraabdominal infections) and *B fragilis* (24%) are the 2 most commonly isolated bacteria in intraabdominal infections²

Worldwide Antimicrobial Resistance in *E. coli* Isolates Causing cIAI

- **SMART study (17 countries)**\(^1\)
 - 3134 Gram-negative bacilli from intraabdominal infections
 - *E. coli* (45%) and *Klebsiella* spp (17%) most common
 - 56% of 1403 *E. coli* isolates susceptible to ampicillin/sulbactam

- **Germany**\(^2\)
 - 425 patients with community-acquired cIAI
 - Pathogens isolated within 2 days of surgery
 - 47% of isolates *E. coli*
 - 32 of 147 *E. coli* isolates resistant to antimicrobial agents (not further specified)

cIAI=complicated intraabdominal infection; SMART=Study for Monitoring Antimicrobial Resistance Trends.

Recommended Regimens for cIAI in High-Risk Patients

<table>
<thead>
<tr>
<th>IDSA Guidelines</th>
<th>SIS Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Severity Infections</td>
<td>High-Risk Patients</td>
</tr>
<tr>
<td>Single agents</td>
<td>Single agents</td>
</tr>
<tr>
<td>1. Piperacillin/tazobactam</td>
<td>1. Piperacillin/tazobactam</td>
</tr>
<tr>
<td>2. Imipenem/cilastatin</td>
<td>2. Imipenem/cilastatin</td>
</tr>
<tr>
<td>Combinations</td>
<td>Combinations</td>
</tr>
<tr>
<td>1. Third-/fourth-generation cephalosporin + metronidazole</td>
<td>1. Ciprofloxacin + metronidazole</td>
</tr>
<tr>
<td>2. Aztreonam + metronidazole</td>
<td>2. Aminoglycoside + antianaerobe</td>
</tr>
<tr>
<td>3. Ciprofloxacin + metronidazole</td>
<td>3. Aztreonam + clindamycin</td>
</tr>
<tr>
<td></td>
<td>4. Third-/fourth-generation cephalosporin + antianaerobe</td>
</tr>
</tbody>
</table>

SIS=Surgical Infection Society.
Pathogens Producing Hospitalized SSTIs (SENTRY, North America)

- In 1998, 26.2% of *S. aureus* isolates were MRSA
- In 2004, 47.4% of *S. aureus* isolates were MRSA

SENTRY=SENTRY Antimicrobial Surveillance Program; SSTI=skin and soft tissue infection.
Prevalence of MRSA Among 422 ED Patients With SSTI, 2004

7/13 (54%)
24/47 (51%)
18/30 (60%)
25/42 (60%)
11/28 (39%)
3/20 (15%)
32/58 (55%)
17/25 (68%)
23/32 (72%)
46/69 (67%)

MSSA 17%

ED=emergency department.
Pathogens Associated With Surgical Site Infection in US Hospitals, 2006-2007 (NHSN)

CoNS= coagulase-negative staphylococci.
Catheter-Related BSIs

- ICU patients are at increased risk for CR-BSIs
 - 48% of ICU patients have indwelling CVCs
 - This accounts for 15 million CVC days per year in US ICUs
- As many as 28,000 ICU patients die of CR-BSIs annually in the United States
 - Assuming average CR-BSI rate of 5.3 per 1000 catheter days and attributable mortality of 18% (0% to 35%)
- Most CR-BSIs are preventable
- Therefore, efforts to decrease CR-BSIs are paramount

CR-BSI=catheter-related bloodstream infection; CVC=central venous catheter.
Recent Decline in Central Line–Associated BSI Rates per 1000 Central Line Days (NHSN)

<table>
<thead>
<tr>
<th>Type of ICU</th>
<th>Pooled Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004(^1)</td>
</tr>
<tr>
<td>Burn</td>
<td>7.0</td>
</tr>
<tr>
<td>Cardiothoracic</td>
<td>2.7</td>
</tr>
<tr>
<td>Coronary</td>
<td>3.5</td>
</tr>
<tr>
<td>Medical</td>
<td>5.0</td>
</tr>
<tr>
<td>Medical-Surgical</td>
<td></td>
</tr>
<tr>
<td>Major Teaching</td>
<td>4.0</td>
</tr>
<tr>
<td>All Others</td>
<td>3.2</td>
</tr>
<tr>
<td>Neurosurgical</td>
<td>4.6</td>
</tr>
<tr>
<td>Pediatric</td>
<td>6.6</td>
</tr>
<tr>
<td>Surgical</td>
<td>4.6</td>
</tr>
<tr>
<td>Trauma</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Pathogens Associated With Central Line–Associated BSI in US Hospitals, 2006-2007 (NHSN)

Collateral Damage: Selection of Drug-Resistant Organisms

- Cephalosporin use has been linked to subsequent infection with
 - VRE
 - ESBL-producing *K pneumoniae*
 - β-Lactam–resistant *Acinetobacter* spp
 - *Clostridium difficile*

- Quinolone use has been linked to
 - Infection with MRSA
 - Infection with ESBL-producing *Klebsiella* spp and *E coli*
 - Quinolone resistance in Gram-negative bacilli, such as *P aeruginosa*

C difficile–Associated Disease: a Reemerging Problem

Annual Incidence of *C difficile* Infection per 100,000 Population in Sherbrooke, Quebec, Canada, 1991-2003

Age (years)
- ≤17
- 18-64
- ≥65
- Total

Annual Incidence per 100,000

Reproduced with permission from Kelly CP, LaMont JT. *N Engl J Med.* 2008;359:1932-1940. ©2008 Massachusetts Medical Society. All rights reserved.
New Treatment Options for MDR Pathogens

• Gram-negative activity
 – Tigecycline
 – Doripenem
 – Others ≥5 years to patients
 – Reintroduction of old therapy (eg, colistin)

• Gram-positive activity
 – Linezolid
 – Daptomycin
 – Tigecycline
 – Telavancin
 – Dalbavancin
 – Oritavancin
 – Iclaprim
 – Ceftobiprole
 – Ceftaroline

Agents in orange are FDA approved.
Antibacterial Agents in Clinical Development

<table>
<thead>
<tr>
<th>Agent</th>
<th>Manufacturer</th>
<th>Class</th>
<th>Development Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftobiprole</td>
<td>Basilea/J&J</td>
<td>Cephalosporin</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>Cerexa/Forest</td>
<td>Cephalosporin</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Telavancin</td>
<td>Theravance</td>
<td>Lipoglycopeptide</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Dalbavancin</td>
<td>Pfizer</td>
<td>Lipoglycopeptide</td>
<td>Approvable letter/Phase 3</td>
</tr>
<tr>
<td>Oritavancin</td>
<td>The Medicines Company</td>
<td>Glycopeptide</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Iclaprim</td>
<td>Arpida</td>
<td>Diaminopyrimidine</td>
<td>Phase 2/3</td>
</tr>
</tbody>
</table>

J&J=Johnson & Johnson.
CMS Preventable Hospital-Acquired Conditions

• These conditions, if not present at the time of admission, are not taken into account in calculating payments to hospitals

• HAIs no longer reimbursed as of October 1, 2008
 – Catheter-associated urinary tract infections
 – Vascular catheter-associated BSIs
 – SSIs following elective surgery (certain orthopedic procedures or bariatric surgeries)
 – Mediastinitis after coronary bypass surgery

• HAIs being considered for nonreimbursement
 – VAP
 – S aureus septicemia
 – MRSA
 – C difficile–associated disease
 – Legionnaires’ disease

Role of Hospital Administration: CMS Regulations

- **CMS conditions of participation: quality assessment and performance improvement program**

- **Executive responsibilities**
 - Maintain ongoing quality improvement program
 - Maintain ongoing patient safety program, including reduction of medical errors
 - Ensure hospital-wide quality assessment and performance improvements address priorities for improved quality of care and patient safety
 - Establish clear expectations for safety
 - Must provide adequate resources for measuring, assessing, improving, and sustaining performance and reducing risk for patients

"Hand hygiene, a very simple action, remains the primary measure to reduce health care–associated infection and the spread of antimicrobial resistance, enhancing patient safety across all settings.

Yet compliance with hand hygiene is very low throughout the world…"\(^1\)

WHO=World Health Organization.
Surgical Care Improvement Project

• Sponsored by CMS
 – Partners include AHA, CDC, IHI, and JC
• Goal: reduce postoperative complications by 25% by the year 2010
• Initiatives in 4 categories
 – Infection
 – Venous thromboembolism
 – Cardiac events surrounding surgery
 – Respiratory events

AHA=American Hospital Association.
Changes in National Performance on Antibiotics Administration

Data source changed from independently abstracted to hospital self-collected.

Deficit Reduction Act and Society of Thoracic Surgeons recommendation of antibiotics for up to 48 hours for cardiac surgery

Compendium of Strategies to Prevent HAIs in Acute Care Hospitals

• Implementation focused; not intended to replace detailed guidelines in each area
• Collaboration of several organizations
 – SHEA*
 – IDSA*
 – Association for Professionals in Infection Control and Epidemiology
 – AHA
 – JC

*Appointed task force.
SHEA=Society of Healthcare Epidemiology in America.
Care Bundles (JC)

• Bundle: collection of interventions that improve patient care outcomes when combined
• Included practices must be backed by excellent research
• Excellent starting point for improving patient care
 – Can easily score whether all elements of bundle were performed
• All components must be performed to maximize success
• Several types of bundles, including ventilator care, central line care, and sepsis management
 – Example: central line bundle stipulates hand hygiene, chlorhexidine, maximal barrier precautions, subclavian insertion, daily evaluation of insertion site, and need for central line

IHI 5 Million Lives Campaign

• Continuation of 100K Lives campaign

• SSIs\(^1\)
 – Appropriate use of antibiotics, appropriate hair removal, perioperative glucose control, and perioperative normothermia

• VAP\(^2\)
 – Elevation of head of bed (30°-45°), daily “sedation vacation,” and daily assessment of readiness to extubate, peptic ulcer disease prophylaxis, and deep vein thrombosis prophylaxis

• Central line infections\(^3\)
 – Hand hygiene, maximum barrier precautions, chlorhexidine, optimal catheter site selection (ideally subclavian vein), daily review of line necessity, and prompt removal of unnecessary lines

CDC/HICPAC Interventions for Control of MDROs

- Administrative (eg, dedicated staff for infection control)
- MDRO education (eg, hand hygiene, antimicrobial prescribing patterns)
- Antimicrobial stewardship (eg, limited third-generation cephalosporins)
- MDRO surveillance (antibiogram)
- Contact precautions (eg, gown and gloves)
- Environmental measures (eg, decontamination and adherence to recommended cleaning practices)
- Decolonization (not routinely recommended)

HICPAC=Healthcare Infection Control Practices Advisory Committee; MDRO=multidrug-resistant organism.
SHEA/APIC Position Statement on Active Surveillance for MRSA

• SHEA/APIC *do not* support legislation to mandate use of active surveillance cultures
 – Considerable evidence supports active surveillance cultures during outbreaks or in high-risk patients
 – Not enough evidence to support mandatory surveillance of all hospitalized patients

• SHEA/APIC support development of validated, efficacious, and cost-effective strategies to prevent infections
 – Support ongoing research on effectiveness of active surveillance culturing
 – Support stronger collaboration between local health authorities and institutional infection control experts

APIC=Association for Professionals in Infection Control and Epidemiology.
Infection Control and Education to Lower Rates of Unit-Acquired MRSA

- Education for MRSA, contact precautions, isolation, antibiotic use
- For the on-unit group, lower MRSA infection rates for blood (1.1%–0.2%, \(P=0.014 \)), sternal wound (2.6%–1.4%, \(P=0.057 \)), and leg wound (1.5%–0.7%, \(P=0.141 \)) sites were noted.

Ward acquisition of MRSA was defined as the isolation of MRSA from any site more than 72 hours after admission by patients who had no history of MRSA infection or colonization.

Antibiotic Control for MDR Gram-Negative Agents

Multidrug-resistant, ceftazidime-susceptible *A baumannii* (chromosomal)

- Ceftazidime-resistant *A baumannii* (chromosomal) 1988
- Contact isolation; patient cohorting; local polymyxin

Ceftazidime use

- Ceftazidime-resistant *K pneumoniae* (plasmid-mediated) 1993
- Ceftazidime-cephamycin-imipenem-resistant *K pneumoniae* (chromosomal and plasmid-mediated) 1995
- Imipenem-resistant *P aeruginosa* (chromosomal) 1996

Imipenem use

- Cephamycin and ceftazidime use

Class restriction of cephalosporins and cephamycins

Reduction of ceftazidime resistance; 44% hospital-wide, 87% in ICUs

Elimination of imipenem resistance, 1999

Contact isolation; local polymyxin

Ongoing

Multifaceted Interventions to Reduce *A baumannii* Infections in the ICU

- 3 ICUs in tertiary center
- Period 1: preintervention
- Period 2: intervention
- Period 3: follow-up
- Interventions
 - Hand hygiene
 - Contact precautions
 - Surveillance cohorting of colonized and infected patients
 - Environmental cleaning with sodium hypochlorite (1:100)
- Rates: 66% reduction in period 2 and 76% in period 3

Control of CRE (CDC and HICPAC)

• CRKP is the most commonly encountered CRE
 – In 2007, 8% of *Klebsiella* isolates were CRKP (<1% in 2000)
 – Resistant to almost all available antimicrobials
 – Some CRE strains are within the susceptible range for carbapenems, making identification difficult

• Infection control
 – Implement CLSI guidelines for susceptibility testing and detection of carbapenemase production
 – Manage CRE patients with contact precautions
 – If CRE or carbapenemase-producing strains are identified, investigate facility for possible transmission

VAP Prevention

• Oral decontamination
 – Chlorhexidine 2%¹
 – Chlorhexidine 0.12%²,³

• Bed position⁴-⁶

• Suctioning⁶,⁷

• Humidification⁸

• Tracheotomy⁹

• Education and surveillance¹⁰

• Bundle¹¹

Intervention to Decrease CR-BSIs in the ICU

• 108 ICUs in Michigan
 – 1981 ICU months
 – 375,757 catheter-days
• 5 evidence-based procedures
 – Hand washing
 – Full barrier precautions during CVC insertion
 – Chlorhexidine prep
 – Avoidance of femoral site
 – Removal of unnecessary CVCs

Conclusions

• MDROs are increasing in prevalence
 – Both Gram-negative and Gram-positive
 – In HAP/VAP, cIAI, BSI, and SSI/cSSTI
• Limited availability of antimicrobials for treatment of MDR Gram-negative pathogens necessitates better use of current agents
• New Gram-positive agents are in development
• All efforts for prevention of hospital-acquired MDRO infections are necessary